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We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now
generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand
mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24gag protein is detected in the cell culture
supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the
HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of
fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These
particles are infectious, as demonstrated by infection experiments with purified virions.

Phylogenetic analyses have provided supporting evidence
that multiple episodes of interspecies virus transmission have
occurred between nonhuman primates and humans (9, 16).
Examples are human T-lymphotropic viruses (HTLVs) and
their related simian counterparts (STLVs) that all belong to
the primate T-cell lymphotropic viruses (8, 10, 23). STLV type
3 (STLV-3) was isolated in 1994 from a captive baboon (Papio
hamadryas) (7). It is now well established that STLV-3 strains
are widespread in a number of simian species living in West,
East, and Central Africa (5, 7, 12–15, 18–22). HTLV type 3
(HTLV-3), the human counterpart of STLV-3, was discovered
in 2005 by our laboratory and another (3, 17, 24), and a third
strain has been described more recently (1). We sequenced the
8,553-bp genome of an HTLV-3 strain (HTLV-3Pyl43) (2) and
showed that it is very similar to that of STLV-3CTO604, a simian
strain from Cameroon (14). However, sequence comparisons
also revealed that the HTLV-3Pyl43 genome is shorter than the
STLV-3 sequences, due to a 366-bp deletion in the pX proxi-
mal region. Of note, this deletion does not affect tax, rex, or env
sequences (2).

Using a PCR-based strategy, we recently developed the first
infectious STLV-3 molecular clone (4). Here, we have em-
ployed the same strategy to construct an HTLV-3 molecular
clone, with HTLV-3Pyl43 DNA as a source of proviral material.
In a first series of experiments, we generated the full-length
8,853-bp HTLV-3Pyl43 provirus by PCR amplification of 20
overlapping fragments as previously described (4). The provi-

ral sequence was ligated into the SV2neo plasmid between the
EcoRI and HpaI restriction sites (Fig. 1A, top panel). Clones
were then screened by digesting the plasmids with EcoRI plus
BamHI plus ScaI or with PstI or XbaI (Fig. 1A, top, middle,
and bottom panels). Two clones (SV2Pyl43 cl9 and SV2Pyl43 cl26)
displayed the expected restriction digestion pattern (Fig. 1B,
lanes 2 to 3, 5 to 6, and 8 and 9), indicating that these plasmids
contained the full-length HTLV-3Pyl43 provirus. Full sequence
analysis was also performed on both clones and demonstrated
that neither mutations nor deletions that would alter the different
viral protein sequences had been introduced in the HTLV-3Pyl43

provirus during the cloning process (data not shown).
We then determined whether our molecular clone was ca-

pable of directing mRNA synthesis in cell culture. To this end,
SV2Pyl43 cl9 and SV2Pyl43 cl26 plasmids were transfected into
293T cells as described previously (4). After 2 days, total RNA
was extracted and treated twice with DNase I. Reverse tran-
scription-PCR experiments were then performed to detect dif-
ferent mRNA viral species—gag, pro, and pol (nonspliced); env
(singly spliced); and tax/rex (doubly spliced)—as well as a pu-
tative mRNA transcribed from the minus strand of the ge-
nome. This mRNA could be translated into a protein that we
tentatively named AEP (antisense-encoded protein).

Total RNA (0.5 �g) was used as a matrix for reverse trans-
criptase PCR (RT-PCR) with the OneStep RT-PCR kit (Qia-
gen). PCR was performed using the following primer pairs: for
Gag, LTR681s (GGAGAAAGCAAACAGGTGGGGG) and
GAG1119as (GTGGGGGTGAAGGACAGGGAGG) (459-bp
RT-PCR product); for Pro, Pro2016se (5�-AGGACTAACCTC
CCCCCGGACC-3�) and Pro2412as (5�-GAGAACACTTGA
GGGTTGGTCAGC-3�) (397-bp RT-PCR product); for Pol,
Pol4029s (5�-CCATCCACCCAGTGTGACCTACAC-3�) and
Pol4633as (5�-GGGTTGTAGGGAACATGGGTTGAAT-3�)
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(605-bp RT-PCR product);for Env, LTR111s (CCAAGGCTC
TGACGTCTCTCCCTAC) and Env5117as (TGGGATTGCC
AAAAGAGGAAGGG) (516-bp RT-PCR product); for Tax,
602LTR and 602MVB Rex (14) (424-bp RT-PCR product);

and for AEP, Pyl43-AEPs (5�-GGAGGCTCCAACCTCAGG-
3�) and Pyl43-AEPas (5�-ACTCCGCCACTTCCTGTAG-3�)
(274-bp RT-PCR product).

As seen in Fig. 2A (lanes 4 and 5, top, middle, and bottom

FIG. 1. Construction of the SV2Pyl43 clone and expression of the viral mRNAs in vivo. (A) Restriction map of the full-length HTLV-3Pyl43
genome inserted into the SV2neo plasmid. (B) Lanes 1 and 11, 1-kb DNA ladder; lanes 2, 3, and 4, restriction profiles of SV2Pyl43 cl9, SV2Pyl43 cl26,
and SV2neo backbone plasmids digested with EcoRI plus ScaI plus BamHI and run on a 0.7% agarose gel; lanes 5, 6, and 7, plasmids digested with
PstI; lanes 8, 9, and 10, plasmids digested with XbaI. pb, paired bases.
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FIG. 2. HTLV-3Pyl43 provirus is transcribed in vitro. (A and B) RT-PCR analysis of SV2Pyl43 viral RNAs. Total RNA was extracted from 293T cells
transfected with SV2Pyl43 cl9, SV2Pyl43 cl26, and SV2neo plasmids or mock transfected. (A) Top, gag; middle, pro; and bottom, pol. (B) Top, env; middle, tax/rex;
bottom, AEP. (A and B) Lanes 1, 100-bp DNA ladder; lane 2, mock-transfected 293T cells; lane 3, RNA from SV2neo (backbone vector)-transfected cells; lanes
4 to 7, RNA from cells transfected with SV2Pyl43 cl9 and SV2Pyl43 cl26 plasmids in the presence (lanes 4 and 5) or absence (lanes 6 and 7) of RT. *, ATG.
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panels), an HTLV-3-specific band corresponding to different
part of the gag pro pol transcript was present only in extracts
obtained from SV2Pyl43-transfected cells. The absence of a
PCR product when RT was omitted demonstrates the lack of
DNA carryover in the RNA preparation (Fig. 2A, lanes 6 and
7, top, middle, and bottom panels). env and tax/rex transcripts
were also present in these cell extracts (Fig. 2B, top and middle
panels). Finally, we also demonstrated that, as in HTLV-1, the
HTLV-3 minus strand is transcribed (Fig. 2B, bottom panel).
Whether the protein that is translated from this mRNA is
functionally related to HBZ remains to be determined. Next,
293T-long terminal repeat (LTR)-green fluorescent protein
(GFP) indicator cells (6) were transfected with either the
SV2Pyl43 cl9 or SV2Pyl43 cl26 plasmid.

The appearance of syncytia is linked to the interaction of the
viral envelope on the surface of the infected cells with the viral
receptors that are present on the surface of adjacent cells.
Forty-eight hours posttransfection, cell culture medium was
removed. Cells were washed with phosphate-buffered saline

and fixed, and pictures were taken with a Zeiss Axioplan-
Axiocam-apotome system (Fig. 3A). As expected, syncytium
formation was observed after transfection of SV2Pyl43 cl9 or
SV2Pyl43 cl26 plasmid in the 293T-LTR-GFP cells demonstrat-
ing HTLV-3 envelope expression (Fig. 3A, panels a and d).
These syncytia were GFP positive (Fig. 3A, panels b and c and
e and f), therefore establishing that the Tax protein was ex-
pressed and able to transactivate the viral promoter in these
cells. GFP signal and syncytia were not visible in cells trans-
fected with the empty backbone vector (Fig. 3A, panel g).

To determine whether SV2Pyl43-transfected cells produce
infectious particles, cell culture supernatant was collected
from SV2Pyl43 cl9- orSV2Pyl43 cl26-transfected cells, purified,
and added to 293T-LTR-GFP indicator cells as previously de-
scribed (4) (Fig. 3B). After several days of culture, a number of
GFP-positive syncytia were reproducibly observed (Fig. 3B,
panels a and d). These syncytia were GFP positive (panels b
and c and e and f). As a control, we did not observe any
syncytia when 293T-LTR-GFP cells were put in contact with

FIG. 3. Viral envelope and Tax expression. (A) 293T-LTR-GFP indicator cells were transiently transfected with SV2Pyl43 cl9 (a to c), SV2Pyl43 cl26
(d to f), or SV2neo (g) backbone vector. The images shown are representative of three different experiments. (B) SV2Pyl43 viral particles are
infectious. Growth medium was collected from cells transfected with SV2Pyl43 cl9 (a to c), SV2Pyl43 cl26 (d to f), or SV2neo (g) molecular clones and
added to 293T-LTR-GFP indicator cells as previously described (4). The images are representative of three different experiments. (C) RT-PCR
analysis of SV2Pyl43 viral RNA extracted from cells infected with purified HTLV-3 viral particles. Lane 1, 100-bp DNA ladder; lane 2, RNA from
SV2neo (backbone vector)-transfected cells; lanes 3 to 6, RNA from cells transfected with SV2Pyl43 cl9 and SV2Pyl43 cl26 plasmids in the presence
(lanes 3 and 4) or absence (lanes 5 and 6) of RT.

FIG. 4. (A) Electron micrograph showing HTLV-3Pyl43 particles in SV2 Pyl43 cl9-transfected cells. (B) Expression of HTLV-3 p24gag protein.
293T cells were transfected with SV2Pyl43 cl9 or SV2neo plasmid. Growth medium was collected. After lysis, viral proteins were transferred to a
membrane and incubated with plasma obtained from an STLV-3-infected monkey (PPA-F8) (left) or plasma obtained from an HTLV-1-infected
TSP/HAM patient (PH1378) (right). These Western blots are representative of three different experiments.
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supernatant from cells transfected with the backbone vector
(Fig. 3B, panel g). We also performed RT-PCR on the RNA
extracted from cells infected with cell-free virus. RNA was
extracted and reverse transcribed as described above. PCR was
then performed with primers located within the gag open read-
ing frame: LTR681s (5�-GGAGAAAGCAAACAGGTGGGG
G-3�) and Gag1293as (5�-TCATGGAGATCTTTAGCTGTG
GGG-3� (PCR product of 612 bp).

This allowed us to demonstrate that gag pro pol mRNA was
present in these cells (Fig. 3C). Altogether, these results dem-
onstrate that the purified HTLV-3Pyl43 particles are infectious.

We also wanted to observe viral particles. Forty-eight hours
posttransfection of 293T with the molecular clone, cell culture
medium was removed and the cells were washed with phos-
phate-buffered saline and fixed for ultrastructural analyses as
previously described (4). Viral particles were then detected in
SV2Pyl43 cl9-transfected cells by electron microscopy (Fig. 4A)
but not in the cells transfected with the backbone vector (data
not shown). The size of these particles is roughly similar to that
of STLV-3 particles (4).

Finally, the supernatant of 293T cells transfected with
SV2Pyl43 cl9 was analyzed (Fig. 4B). Growth medium was col-
lected, clarified by low-speed centrifugation, and filtrated. Vi-
rus was then layered on a 20% glycerol gradient and centri-
fuged. The pellet was resuspended in lysis buffer. Each sample
was resolved by electrophoresis on a 10% N,N-methylenebis-
acrylamide–Tris gel. As controls, the supernatant from HTLV-
1-infected (Hut102) and/or HTLV-2-infected (C19, MO) cell
cultures was also tested. The membrane was incubated using
STLV-3 plasma (Fig. 4B, left panel) or HTLV-1 plasma (right
panel). With both sera, a band corresponding to the HTLV-3
p24gag protein was observed in the supernatant obtained from
SV2Pyl43 cl9-transfected cells, but not in the protein extracts
from SV2neo-transfected cells. Interestingly, the STLV-3
plasma also allowed the detection of the HTLV-1 and HTLV-2
p24gag protein (Fig. 4B, left panel).

Altogether, our data demonstrate that the SV2Pyl43 cl9 mo-
lecular clone is functional and produces infectious viral parti-
cles. Comparison of the viral life cycles of both STLV-3 and
HTLV-3 in a rabbit model (11) will now allow us to ascertain
whether the 366-bp deletion impacts either viral infectivity or
replication in vivo. Finally, given the fact that an HTLV-3-
infected cell line is not yet available, this clone will be a unique
and powerful tool that will allow us to investigate HTLV-3
protein expression and viral pathogenesis in vivo.
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